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Formal Verification with Certora Prover

CODE

SPEC

Proof of all behaviors 
meeting the spec

A rare behavior which 
violates the spec

Code + Spec

Logic

Systematically translate code + spec to equivalent formula

§ Wrap code in specification using ergonomic DSL (CVL)

§ Break code down into simple operations

§ Meaning preserving simplifications and optimizations
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Simple Example
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}
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Simple Example
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?
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Certora Prover Works on Bytecode

Compile Solidity to get EVM Bytecode

Can support other EVM languages (Vyper)

Helps find compiler bugs!



Compiler Bugs Found by Certora Prover
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Break down code into small simple steps

One operation per TAC instruction

Only a small number of instructions in TAC

Easier to analyze
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MyStruct memory x = { f: 1 };
MyStruct memory y = { f: 2 };
y.f = 3;
assert(x.f == 1);

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Segment memory into disjoint non-interfering sets of pointers
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Hoare Triples
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that after executing S Q holds
{WP (S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if  P ⇒ WP (S, Q) then {P} S {Q}
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Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that after executing S Q holds
{WP (S, Q)} S {Q}
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Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that Q holds after executing S 
{WP (S, Q)} S {Q}

Then to prove the triple, just show that P ⇒WP(S, Q)

Thus, if  P ⇒ WP (S, Q) then {P} S {Q}

Where do P and Q come from?
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Writing the Specification
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?

Need to first write “deposit increases funds by amount” 
more formally so that we can automatically check it!



Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
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Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Inline from contract
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Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Allows us to get pre and post conditions!



Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Must hold for ALL values of amount!
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Turning the program + spec to logic is done!
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Contract meets spec!

More about solvers
in the next talk!



Putting It All Together
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Quis custodiet ipsos custodes?

Is the spec itself 
trustworthy?



Is the Spec Trustworthy?
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec

Code



rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Is it vacuously true?
Does it catch errors?

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Code

Is the Spec Trustworthy?



rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Code

Mutation Verification

Is it vacuously true?
Does it catch errors?



Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec must catch 
mutants

Is it vacuously true?
Does it catch errors?



Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += 1;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec must catch 
mutants

Is it vacuously true?
Does it catch errors?



Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

// funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec must catch 
mutants

Is it vacuously true?
Does it catch errors?



Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account] - 1;
}

}

Spec must catch 
mutants

Is it vacuously true?
Does it catch errors?



Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Is it vacuously true?
Does it catch errors?

Spec must catch 
mutants

Improve spec based on mutants that “got away”

Assign spec a “score” based on #mutants caught
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Thank You!





Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Not executable but looks like Solidity!


