
CERTORA
Move fast and break nothing

2 0 2 2

The Certora Prover Pipeline

Chandrakana Nandi
Stanford Workshop

August 30, 2022

CODE

CERTORA
PROVER

SPEC

Proof of all behaviors
meeting the spec

A rare behavior which
violates the spec

Formal Verification with Certora Prover

Formal Verification with Certora Prover

CODE

CERTORA
PROVER

SPEC

Proof of all behaviors
meeting the spec

A rare behavior which
violates the spec

???

Formal Verification with Certora Prover

CODE

SPEC

Proof of all behaviors
meeting the spec

A rare behavior which
violates the spec

Code + Spec

Logic

SOLVERS

Formal Verification with Certora Prover

CODE

SPEC

Proof of all behaviors
meeting the spec

A rare behavior which
violates the spec

Code + Spec

Logic

Systematically translate code + spec to equivalent formula

§ Wrap code in specification using ergonomic DSL (CVL)

§ Break code down into simple operations

§ Meaning preserving simplifications and optimizations

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

TAC

VC
Generator

TAC

Certora Prover Architecture

Simple Example
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Simple Example
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Simple Example
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Simple Example
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Simple Example
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

TAC

VC
Generator

TAC

Certora Prover to the Rescue!

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

TAC

VC
Generator

TAC

Certora Prover Works on Bytecode

Compile Solidity to get EVM Bytecode

Can support other EVM languages (Vyper)

Helps find compiler bugs!

Compiler Bugs Found by Certora Prover

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

VC
Generator

TAC

Bytecode to Three-Address Code

Decompiler

EVM Bytecode

TAC

Break down code into small simple steps

One operation per TAC instruction

Only a small number of instructions in TAC

Easier to analyze

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

VC
Generator

TAC

Bytecode to Three-Address Code

Decompiler

EVM Bytecode

TAC

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Segment memory into disjoint non-interfering sets of pointers

Lower burden on subsequent steps in the pipeline

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

MyStruct memory x = { f: 1 };
MyStruct memory y = { f: 2 };
y.f = 3;
assert(x.f == 1);

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Segment memory into disjoint non-interfering sets of pointers

Lower burden on subsequent steps in the pipeline

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Segment memory into disjoint non-interfering sets of pointers

Lower burden on subsequent steps in the pipeline

MyStruct memory x = { f: 1 };
MyStruct memory y = { f: 2 };
y.f = 3;
assert(x.f == 1);

does not affect x

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Segment memory into disjoint non-interfering sets of pointers

Lower burden on subsequent steps in the pipeline

MyStruct memory x = { f: 1 };
MyStruct memory y = { f: 2 };
y.f = 3;
assert(x.f == 1);

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Segment memory into disjoint non-interfering sets of pointers

Lower burden on subsequent steps in the pipeline

MyStruct memory x = { f: 1 };
assert(x.f == 1);

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

TAC

Logical
formula

VC
Generator

Generate Verification Conditions

Hoare Triples
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that after executing S Q holds
{WP (S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Hoare Triples
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that after executing S Q holds
{WP (S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that Q holds after executing S
{WP (S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that Q holds after executing S
{WP (S, Q)} S {Q}

Then to prove the triple, just show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that Q holds after executing S
{WP (S, Q)} S {Q}

Then to prove the triple, just show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that Q holds after executing S
{WP (S, Q)} S {Q}

Then to prove the triple, just show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that Q holds after executing S
{WP (S, Q)} S {Q}

Then to prove the triple, just show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Where do P and Q come from?

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

TAC

Logical
formula

VC
Generator

Generate Verification Conditions

From the Spec!!

Writing the Specification
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?

Need to first write “deposit increases funds by amount”
more formally so that we can automatically check it!

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Inline from contract

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Allows us to get pre and post conditions!

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Must hold for ALL values of amount!

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Generate Verification Conditions

TAC

Logical
formula

VC
Generator

P ⇒ WP (S, Q)

Turning the program + spec to logic is done!

VC
Generator

TAC

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Using Constraint Solvers

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

CounterexamplesContract violated spec!

Contract meets spec!

VC
Generator

TAC

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Using Constraint Solvers

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

CounterexamplesContract violated spec!

Contract meets spec!

More about solvers
in the next talk!

Putting It All Together

https://demo.certora.com

CERTORA
PROVER

Overflow!

Quis custodiet ipsos custodes?

Is the spec itself
trustworthy?

Is the Spec Trustworthy?
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec

Code

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Is it vacuously true?
Does it catch errors?

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Code

Is the Spec Trustworthy?

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Code

Mutation Verification

Is it vacuously true?
Does it catch errors?

Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec must catch
mutants

Is it vacuously true?
Does it catch errors?

Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += 1;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec must catch
mutants

Is it vacuously true?
Does it catch errors?

Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

// funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Spec must catch
mutants

Is it vacuously true?
Does it catch errors?

Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account] - 1;
}

}

Spec must catch
mutants

Is it vacuously true?
Does it catch errors?

Mutation Verification
rule deposit_ok (uint256 amount) {

env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

contract Bank {
mapping (address => uint256) public funds;
function deposit (uint256 amount) public payable {

funds[msg.sender] += amount;
}
function getFunds (address account) public view returns (uint256) {

return funds[account];
}

}

Is it vacuously true?
Does it catch errors?

Spec must catch
mutants

Improve spec based on mutants that “got away”

Assign spec a “score” based on #mutants caught

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

TAC

VC
Generator

TAC

The Certora Prover Pipeline

Thank You!

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Not executable but looks like Solidity!

