
CVL: Parametric Rules

Michael George

Stanford, August 2022

Are my funds safe?
So far:

▶ transfer spends the sender’s funds
▶ transferFrom reverts if caller’s allowance is 0

So if I don’t call transfer and don’t give anyone an allowance, my funds
are safe …right?

▶ Do I control my own allowance?
▶ Do I control my own balance?

Only token holder can approve (stakeholder rule)
Wewant to show that the token holder controls their allowances

▶ Allowances are controlled by approve:
//// contracts/IERC20.sol

/// Sets `amount` as the allowance of `spender` over the caller's tokens.
function approve(address spender, uint256 amount) external returns (bool);

▶ Maybe check that only the holder can call approve?
//// certora/specs/ERC20.spec

/// Approve reverts unless called by the owner
rule onlyHolderCanCallApprove {

address holder; address spender;

env e; uint256 amount;
approve@withrevert(e, spender, amount);

// note: P => Q means "if P then Q" or "P implies Q"
assert e.msg.sender != holder => lastReverted,

"approve can only successfully be called by the holder";
}

▶ Fails (results link)! Who is the holder?
▶ …the address whose (outgoing) allowance changes

https://prover.certora.com/output/6554/6041f00042b4fdc00dd5?anonymousKey=ee8ff1ce39f4c21ad3d4deba61c2668443617d39

Only holder can approve, take 2 (variable change rule)
Wewant to show that the token holder controls their allowances

▶ if approve changes holder’s allowance, then holder called it. (passes)

▶ if anymethod changes holder’s allowance, then the holder called it.
▶ if anymethod increases holder’s allowance, then the holder called it

(passes)
▶ …and theymeant to change the balance

rule onlyHolderCanChangeAllowance {

address holder; address spender;
mathint allowance_before = allowance(holder, spender);

env e; uint256 amount;
approve(e, spender, amount);

mathint allowance_after = allowance(holder, spender);

assert allowance_after > allowance_before => e.msg.sender == holder,
"addresses other than holder must not affect holder's allowance";

}

https://prover.certora.com/output/6554/b0d542ba966b65fc6b8c?anonymousKey=f73f621540129bfafc8c0e7910e2b1532d8e1636
https://prover.certora.com/output/6554/a1f0ad4e7f57fda681e8?anonymousKey=d3263ac0c26dae300d75dc2797e2ef1e21324a2e

Only holder can approve, take 2 (variable change rule)
Wewant to show that the token holder controls their allowances

▶ if approve changes holder’s allowance, then holder called it.

▶ if anymethod changes holder’s allowance, then the holder called it. (link)
▶ if anymethod increases holder’s allowance, then the holder called it (passes)

▶ …and theymeant to change the balance (passes)
rule onlyHolderCanChangeAllowance {

address holder; address spender;
mathint allowance_before = allowance(holder, spender);

method f; env e; calldataarg args; // was: env e; uint256 amount;
f(e, args); // was: approve(e, spender, amount);

mathint allowance_after = allowance(holder, spender);

assert allowance_after > allowance_before => e.msg.sender == holder,
"addresses other than holder must not affect holder's allowance";

assert allowance_after > allowance_before =>
(f.selector == approve(address,uint).selector || f.selector == increaseAllowance(address,uint).selector),
"only approve and increaseAllowance can increase allowances";

}

https://prover.certora.com/output/6554/4895c9798e32ed10bb81?anonymousKey=2563bd6ca6efda69326ae9e2e6ea313f46a87589
https://prover.certora.com/output/6554/a1f0ad4e7f57fda681e8?anonymousKey=d3263ac0c26dae300d75dc2797e2ef1e21324a2e
https://prover.certora.com/output/6554/662da21aca0e407cfd92?anonymousKey=9129d562413f5f7d6164aa64191019ac9b9987ad

Summary
▶ You can use a method variable to stand in for an arbitrary method

▶ Need to pass an env and a calldataarg parameter
▶ Prover will verify separately on every (external) method in the contract
▶ Note: rules using method variables are called “parametric rules.”

▶ You can identify method object f using f.selector

▶ The expression P => Qmeans “if P then Q” or “P implies Q”

▶ Some general rule patterns:
▶ Generalizing rules can get good coverage quickly
▶ “Unit test rules”: describe behavior of specificmethods

▶ e.g. transferSpec
▶ “Stakeholder rules”: put yourself in user’s shoes

▶ e.g. onlyHolderCanChangeAllowance
▶ “Variable change rules”: describe conditions of variable changes

▶ e.g. onlyHolderCanChangeAllowance
▶ More on rule patterns tomorrow!

Exercise (∼15 minutes)
We just wrote rules for allowance changes

▶ In certora/specs/ERC20.spec
▶ If allowance increases, then the sender was the holder, and the

method was appropriate

Now, write rules for balance changes

▶ In certora/specs/ERC20.spec
▶ If my balance goes down, what should I know?

