CVL: Basic Rules

?A‘;q certora

Michael George

Stanford, August 2022

certora

Overview for this session

Basic rules for ERC20 contracts

Presentation: writing and debugging rules

transfer changes balances appropriately
transfer reverts when it should
transfer doesn’t revert unexpectedly

Exercise: similar rules for transferFrom

Generalized (parametric) rules

Presentation: rules that apply to all methods

Only the owner canincrease their allowance
The owner only changes their allowance deliberately

Exercise: similar rules for balanceOf

74

X

N

certora

ERC20 transfer and balanceOf

The first properties we’d like to test are described in the interface:

/1] contracts/IERC20.spec

[**

* Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {

[**
* Moves “amount’ tokens from the caller's account to ‘recipient’.
*/
function transfer(address recipient, uint256 amount)
external
returns(bool);

[*%
* Returns the amount of tokens owned by “account’.
*/
function balanceOf(address account)
external view
returns(uint256);

o @ certora

Specifying transfer in CVL (unit-test-style rules)

/1/] certora/specs/ERC20.spec

methods { (results link)
balanceOf (address) returns (uint) envfree
/// Transfer must move ‘amount' tokens from (Second hnk)

//] the caller's account to ‘recipient'.
rule transferSpec {
address sender; address recip; uint amount;

env e;
require e.msg.sender == sender;

mathint balance_sender_before = balanceOf(sender);
mathint balance_recip_before = bclanceOf(recip);

transfer(e, recip, amount);

mathint balance_sender_after = balanceOf(sender);

mathint balance_recip_after = balanceOf(recip);
require sender != recip;
assert balance_sender_after == balance_sender_before - amount,

"transfer must decrease sender's balance by amount”;

assert balance_recip_after == balance_recip_before + amount,

"transfer must increase recipient's balance by amount”;
} X certora

https://prover.certora.com/output/6554/7c3d8d9cd1e4a8d43246?anonymousKey=cd65d8676f1af617d565ba0e44d77a1f8ffd54a8
https://prover.certora.com/output/6554/7a84047100c50672ef08?anonymousKey=eec3f306ae40b6c9d3b6288d041cbca9858ec394

What about revert?

So far:

Transfer reduces sender’s balance by amount
Transfer increases recipient’s balance by amount

What if sender’s balance is less than amount?

Transaction reverts
No balances change!
Why doesn’t this violate the rule?

Answer: by default, Prover ignores reverting paths.

we can override this behavior to reason about reverting

74

X

N

certora

transfer revert conditions

//// certora/specs/ERC20.spec
Results
/// Transfer must revert if the sender's balance is too small
rule transferReverts { O e it p—
env e; address recip; uint amount; = Type foriier results o

) @ transferReverts 0s
require balanceOf(e.msg.sender) < amount;

(results link)
transferawithrevert(e, recip, amount) ;

assert lastReverted,
"transfer(recip,amount) must revert if sender's balance is less than “amount ";

Reasoning about reverts:

Use fawithrevert(...) to consider paths where f reverts
Use lastReverted to determine whether last call reverted

Warning: it is always the last call!
save it if you need to make another call

,24&; certora

https://prover.certora.com/output/6554/6f60ed5fb862a5d0875a?anonymousKey=00c547b1e751563fe338d494cc82705042e4ab3f

Proving transfer doesn’t revert (liveness rules)

Call Trace Q Type to filter

/1/] certora/specs/ERC20.spec

/// Transfer must not revert unless muli contract setup

11/ - the sender doesn't have enough funds rule parameters setup

/11

/1] last storage initialize

111 assumptions about extcodesize

5; ; assumptions about starting balances
/// atitle Transfer doesn't revert record starting nonces

rule transferDoesntRevert {
s s cloned contracts have no balances
env e; address recipient; uint amount;
Linked immutable setup
require balanceOf(e. msg. sender) > amount;
require balanceOf(e.msg.sender) > amount
~ transfer(e,recipient,amount) could_revert
L ~ ERC20.transfer{recipient=0x401 (same as recipient), amount=13)

| y
. L. — ~ Why did this call revert?() REVERT CA\
transferawithrevert(e, recipient, amount) ; |
assert llastReverted; — + See \"contract ERC20 is IERC20, IERC20Metadata {..}\' @

.certora_configlautoFinder_ERC20.sol_0/2_autoFinder_ERC20.sol: line 34()

‘— !{e.msg.value==0x0)() DL

assert !lastReverted

,24&; certora

Proving transfer doesn’t revert (liveness rules)

/1/] certora/specs/ERC20.spec

111
111
111
111
111
111
111
117

Transfer must not revert unless
- the sender doesn't have enough funds
- or the message value is nonzero,

atitle Transfer doesn't revert

rule transferDoesntRevert {

env e; address recipient; uint amount;

require balanceOf(e.msg.sender) > amount;
require e.msg.value == 0;

transferawithrevert(e, recipient, amount);
assert !lastReverted;

require balanceOf(e.msg.sender) > amount
require e.msg.value == 0
~ fransfer(e,recipient,amount) could_revert
l— ~ ERC20.transfer(recipient=0xffff (same as recipient), amount=2)
L ~ (internal) ERC20 fransfer(recipient=0xffff (same as recipient), amount=2)

L ~ (internal) ERC20._t der=0xfffe (same as e.msg.sender),

recipient=0xffff (same as recipient), amount=2)

— (internal) ERC20._beforeTokenTransfer(from=0xfffe (same as
e.msg.sender), to=0xffff (same as recipient), amount=2)

— > Load from _balances["]: 15
— > Store at _balances["]: 13

— > Load from _balances[*]: Oxfifftfirt e
— ~ Why did this call revert?(}

L 37IR141]>((0x240x100 -int 0x1)-amount)()

assert llastReverted

0]
'4»‘ certora

Proving transfer doesn’t revert (liveness rules)

» require balanceOf(e.msg.sender) > amount
/1/] certora/specs/ERC20.spec
» require e.msg.value == 0

/] Transfer must not revert unless » require balanceOf(recipient)+intamount < max_uint

/11 - the sender doesn't have enough funds
/11 - or the message value is nonzero, ~ transfer(e,recipient,amount) could_revert
- or the recipient's balance would overflow,
5; ; P L ~ ERC20.transfer(recipient=0x2711 (same as recipient), amount=2)
/11 l— ~ (internal) ERC20.transfer(recipient=0x2711 (same as recipient), amount=2)
111 |)
/// atitle Transfer doesn't revert » (intenal) ERC20. 0x0 (same as e.msg.sender).
rule transferDoesntRevert { recipient=0x2711 (same as recipient), amount=2)

env e; address recipient; uint amount;
» assert llastReverted

require balanceOf(e.msg.sender) > amount;
require e.msg.value == 0;
require balanceOf(recipient) + amount < max_uint;

transferawithrevert(e, recipient, amount);
assert !lastReverted;

,24&; certora

Proving transfer doesn’t revert (liveness rules)

/1] certora/specs/ERCQO .spec require balanceOf(e.msg.sender) > amount

require e.msg.value ==
/// Transfer must not revert unless

/1] - the sender doesn't have enough funds > require balanceOf{recipient)+intamount < max_uint
/1] - or the message value is nonzero, > require e.msg.sender 1= 0
11/ - or the recipient's balance would overflow, B
/1] _ or the message sender is © ~ fransfer(e,recipient,amount) could_revert
/11 L ~ ERC20.transfer(recipient=0x0 (same as recipient), amount=13)
/11
/ ; / atitle Transfer doesn't revert l— ~ (internal) ERC20.transfer(recipient=0x0 (same as recipient), amount=13)
rule transferDoesntRevert { L > (internal) ERC20._transfer(sender=0x2711 (same as
env e; address recipient; uint amount; e.msg.sender), recipient=0x0 (same as recipient), amount=13)
require balanceOf(e.msg.sender) > amount; > assert llastReverted
require e.msg.value == 0;
require balanceOf(recipient) + amount < max_uint;
require e.msg.sender != 0;

transferawithrevert(e, recipient, amount);
assert !lastReverted;

,24&; certora

Proving transfer doesn’t revert (liveness rules)

/1/] certora/specs/ERC20.spec

/// Transfer must not revert unless
the sender doesn't have enough funds

111
111
111
111
111
1117

or the
or the
or the
or the

message value is nonzero,
recipient's balance would overflow,
message sender is 0O

recipient is 0

/// atitle Transfer doesn't revert
rule transferDoesntRevert {

require
require
require
require
require

assert

env e; address recipient; uint amount;

balanceOf (e.msg.sender) > amount;
e.msg.value == 0;

balanceOf(recipient) + amount < max_uint;
e.msg.sender = 0;

recipient != 0;

transferawithrevert(e, recipient, amount);
IlastReverted;

Results

Q, Type to filter All results

® transferDoesntRevert

(results link)

-

@ certora

https://prover.certora.com/output/6554/9a16f3d1434013167dc1?anonymousKey=6d74b9277ebc1760c3c5f03b52c1a82da7e50652

Summary

Writing rules is like writing unit tests
But you can let the prover choose the values!

Use mathint variables to avoid overflow in spec

Pass env as first argument to specify msg. sender and other variables
Use envfree declaration in methods block to avoid passing env

By default, reverting paths are ignored
Useawithrevert and lastReverted to reason about reverting paths

Writing “liveness properties” is hard (but possible!)

,ZAL;‘ certora

Exercise (~15 minutes)

So far (certora/specs/ERC20.spec):

transferSpec
transferReverts
transferDoesntRevert

Exercise:
Write transferFromSpec
...getitto pass
Try transferFromReverts
Try transferFromSucceeds

To run:
sh certora/scripts/verifyERC20.sh

Ask for help!

///] contracts/IERC20.sol

/// Interface of the ERC20 standard as defined in the EIP.
interface IERC20 {

/// Moves ‘amount’ tokens from ‘sender’ to ‘recipient’ using
/// the allowance mechanism. ‘amount' is then deducted from
/// the caller's allowance.
/11
function transferFrom(

address sender,

address recipient,

uint256 amount
) external returns (bool);

/// Returns the remaining number of tokens that 'spender’
/// will be allowed to spend on behalf of ‘owner' through
/// {transferFrom}.
111
/// This value changes when {approve} or {transferFrom} are
/1] called.
/11
function allowance(address owner, address spender)
external
view
returns(uint256) ;

@ certora

