Invariants

?A‘;q certora

Michael George

Stanford, August 2022

74

X

N

certora

Invariants

What is an invariant?

Something that doesn’t change over time
A property of the state (storage) that should be true between transactions
No side effects (view-only)

Examples:

Things that are invariants: properties of “valid” states

The balance of the zero address is zero
The total supply is the sum of all user balances
Assets exceed liabilities (solvency)

Things that are not invariants: properties of transitions

transferFromreverts if the sender’s allowance is O
A user’s rewards can only increase ¢

A
7

4@ certora

JAY.

Invariants in CVL

Writing an invariant in CVL:

/// The address 0x0 always has a balance of 0
invariant balanceOfZeroIszZero()
balance0f(0) ==

/// The balance of a single user is always less than the total supply
invariant balanceBoundedBySupply(address a)
balance0f(a) <= totalSupply()

@ certora

Checking invariants

> Invariant: x = y °

all states

» Need to check that initial state (after any constructor call) is valid

» Need to check that transitions from valid states go to valid states gy certora

Verifying an invariant

/1] Th dd Ox0 alw h bal f 0 1
invarizmstl bgizzceOfZZroggzerzi)g e e (reSUItS hnk)
balance0f(0) == 0
{ (results with preserved block)
preserved with (env e) {
require e.msg.sender != 0;

preserved blocks allow adding requirements to preservation checks
WARNING: only use these for things that are always true!
...examples of danger soon

7

,gh; certora

https://prover.certora.com/output/6554/ba49a57bb0e4c63f6e9d?anonymousKey=012604e9afe5315a1a04900fd5ded592c35092e4
https://prover.certora.com/output/6554/1a582ab2dd55e12feb6e?anonymousKey=e3aa06529b09f52e6f5bf09581c15dbfa3a14479

BallGame Exercise (~10 minutes)

BallGame is a simple implementation of keep away:

Player 1 always passes to player 3
Player 3 always passes to player 1
Everyone else passes to player 2
Ball starts with player 1

Game is lost if player 2 gets the ball

Question: can player 2 ever get the ball?

Exercise: Prove it!
In BallGame directory:

Contractin contracts/BallGame.sol
Specincertora/specs/BallGame. spec
Run using sh certora/scripts/verifyBallGame.sh

724*;‘ certora

Solution walkthrough
Goal: player 2 never gets the ball

First attempt:

invariant plogerTwoNeverWins[)
ballPosition() != 2

Fails when ballPositionis O! (results link)

Second attempt: rule out bad case

invariant playerTwoNeverWins()
ballPosition() != 2
{

preserved with(env e) {
require ballPosition() != 0;
}

}
Fails with a different bad case! (results link)

4
7

4@ certora

https://prover.certora.com/output/6554/6c981b0c0d5c85227263?anonymousKey=2ed603723b2b8e832845597c5e2b3468a9bcadc0
https://prover.certora.com/output/6554/3d920cfc2a97372a0b9b?anonymousKey=7726275875e7ebd4363b1bdb403cd41ee982624b

Third attempt: rule out more bad cases

invariant playerTwoNeverWins() ///] contracts/BallGameBroken.
ballPosition() != 2
{ //]/ Move the ball to the next
preserved with(env e) { /// based on who is currently
require ballPosition() == 1 || ballPosition() == 3;/// - player 1 will pass to
} //] - player 3 will pass to
} /// - everyone
/11

Passes! (results link)

sol

player,
holding it:
player 3
player 1

else will pass to player 2

So the property holds ...right? if (ballPosition == 1)

ballPosition = 4;
else if (ballPosition == 3)
ballPosition = 1;

else

}

ballPosition = 2;

/// adev this version has a known bug
function pass() external {

The rule still passes on the buggy code (results link)! Why?

We ruled out the counterexample!

We assumed something that we didn’t prove

,24&; certora

https://prover.certora.com/output/6554/9feb9c5adc164e5b721b?anonymousKey=86f6100aee2ae1a87da9c9de36aad517e5dc231f
https://prover.certora.com/output/6554/8f5cce6884ccc41d990c?anonymousKey=947068e10c26c3e8f08f90e6d6eaefe63dbd94d3

Fourth attempt: strengthening the invariant

If ball position can only be 10r 3, it can’t be 2; let’s prove that instead

invariant onlyGoodPlayers()
ballPosition() == 1 || ballPosition() == 3

Passes on our good code (results link)

No extra requirements, so property holds.
Fails on our broken code (results link)

We catch the bad case

724*;‘ certora

https://prover.certora.com/output/6554/3a6d9db7c45623ac1cd0?anonymousKey=199290e5d3f65b180aafa8015a522fd30ef5b3d4
https://prover.certora.com/output/6554/01701df958caac05f115?anonymousKey=052fe61bced2d6ff59056d4c09e5b738932aab20

Returning to original goal

We wanted to prove ballPosition() != 2
Instead we proved ballPosition() == 1 || ballPosition()
Seems stronger, but can we check?

/// The ball should never get to player 2

invariant playerTwoNeverWins()
ballPosition() != 2

{

1]
]
(o)

preserved with (env e) {
requireInvariant onlyGoodPlayers(); // was: require ballPosition() == 1 || ballPosition() == 3

requireInvariant is shorthand for require

playerTwoNeverWins still passes on correct code (link)
Still passes on buggy version too (link)
...butitis much safer because we separately proved the requirement

requireInvariant can be used anywhere require can, use it! £ certora

https://prover.certora.com/output/6554/9619c66f358f4dabe34c?anonymousKey=dbfcba6b11b4bb52ae00f79369f981adf919fb8d
https://prover.certora.com/output/6554/75dfd2a8d0252b12c772?anonymousKey=f5b6eb71870ede0dc4f725a945c3f73981d1c7ce

Back to ERC20

724*;‘ certora

Back to ERC20: Invariants about total supply

Let’s prove invariants relating balances to total supply

Individual user balances can’t be larger than the total supply
Total supply is the sum of user balances (next session)

724*;‘ certora

Proving that each user balance is bounded by total supply

First attempt (results link):

invariant balancesBoundedByTotalSupply(address a)
balance0f(a) <= totalSupply()

Fails on transfer:
although a starts with small balance, b doesn’t necessarily!

Second attempt: strengthen the invariant (results link)

invariant balancesBoundedByTotalSupply(address alice, address bob)
balanceOf(alice) + balance0f(bob) <= totalSupply()

Fails for the same reason!

alice and bob have small balances
but chuck might not!

Fourth attempt: exercise (in 2 slides)
Fifth (correct) attempt: next session

724*;‘ certora

https://prover.certora.com/output/6554/de4f3f95795e0fcc9ae2?anonymousKey=e7996531d3d59ce4a407553f2e574dcca34fa125
https://prover.certora.com/output/6554/3b8e293d02d81b657282?anonymousKey=6de8c5524083d71507658c1b3a8afb0f73bfc911

Summary

Things we covered in this session

Invariants are properties of the state that don’t change over time
Use invariant keyword to write invariants

Prover checks that constructor establishes invariant (instate)

Prover checks that methods maintain the invariant (preserve)
preserved blocks are an “escape hatch” to tell the prover things you
know

..but thisis dangerous!
Only require things that must be true
requirelnvariants
platform assumptions (e.g. msg.sender != 0)
protocol assumptions (e.g. owner will never withdraw all the funds ...)
after writing specs, review your preserved blocks!

Sometimes you need to strengthen invariants to prove them

Next session: strengthening bounded balance more and proving it ggcertora

Exercise: Exploit the buggy rule

Fourth attempt: use preserved blocks:

invariant balancesBoundedByTotalSupply(address alice, address bob)
balanceOf(alice) + balance0f(bob) <= totalSupply()

{

preserved transfer(address recip, uint256 amount) with (env e) {
require recip == alice || recip == bob;
require e.msg.sender == alice || e.msg.sender == bob;

preserved transferFrom(address from, address to, uint256 amount) {
require from == alice || from == bob;
require to == alice || to == bob;
}
}

Here preserved blocks apply to specific methods
Rule passes (results link)

Exercise: modify ERC20. sol to pass rule but violate invariant

Note: | forgot to push this before we started!
In ERC20Examples:

git switch main 0
git pull 2 certora

https://prover.certora.com/output/6554/eeae7b95ab50947c734a?anonymousKey=340238dc683b5b65521ddf767b0f11a5bbf96374

