
Invariants

Michael George

Stanford, August 2022

Invariants
What is an invariant?

▶ Something that doesn’t change over time
▶ A property of the state (storage) that should be true between transactions

▶ No side effects (view-only)

Examples:

Things that are invariants: properties of “valid” states

▶ The balance of the zero address is zero
▶ The total supply is the sum of all user balances
▶ Assets exceed liabilities (solvency)

Things that are not invariants: properties of transitions

▶ transferFrom reverts if the sender’s allowance is 0
▶ A user’s rewards can only increase

Invariants in CVL
Writing an invariant in CVL:
/// The address 0x0 always has a balance of 0
invariant balanceOfZeroIsZero()

balanceOf(0) == 0

/// The balance of a single user is always less than the total supply
invariant balanceBoundedBySupply(address a)

balanceOf(a) <= totalSupply()

Checking invariants
▶ Invariant: x ≥ y

all states
valid states

x : 0
y : 0

x : 1
y : 0

x : 3
y : 2 x : 0

y : 7

x : 5
y : 4

x : 3
y : 5constructor(3)

constructor(9)

f(0)

g(4)

f(7)

h(3)

…f(1)

…
f(2)

g(1)

▶ Need to check that initial state (after any constructor call) is valid
▶ Need to check that transitions from valid states go to valid states

Verifying an invariant

/// The address 0x0 always has a balance of 0
invariant balanceOfZeroIsZero()

balanceOf(0) == 0

{
preserved with (env e) {

require e.msg.sender != 0;
}

}

(results link)

(results with preserved block)

▶ preserved blocks allow adding requirements to preservation checks
▶ WARNING: only use these for things that are always true!

▶ …examples of danger soon

https://prover.certora.com/output/6554/ba49a57bb0e4c63f6e9d?anonymousKey=012604e9afe5315a1a04900fd5ded592c35092e4
https://prover.certora.com/output/6554/1a582ab2dd55e12feb6e?anonymousKey=e3aa06529b09f52e6f5bf09581c15dbfa3a14479

BallGame Exercise (∼10 minutes)
BallGame is a simple implementation of keep away:

▶ Player 1 always passes to player 3
▶ Player 3 always passes to player 1
▶ Everyone else passes to player 2
▶ Ball starts with player 1
▶ Game is lost if player 2 gets the ball

Question: can player 2 ever get the ball?

▶ Exercise: Prove it!
▶ In BallGame directory:

▶ Contract in contracts/BallGame.sol
▶ Spec in certora/specs/BallGame.spec
▶ Run using sh certora/scripts/verifyBallGame.sh

Solution walkthrough
Goal: player 2 never gets the ball

▶ First attempt:
invariant playerTwoNeverWins()

ballPosition() != 2

Fails when ballPosition is 0! (results link)

▶ Second attempt: rule out bad case
invariant playerTwoNeverWins()

ballPosition() != 2
{

preserved with(env e) {
require ballPosition() != 0;

}
}

Fails with a different bad case! (results link)

https://prover.certora.com/output/6554/6c981b0c0d5c85227263?anonymousKey=2ed603723b2b8e832845597c5e2b3468a9bcadc0
https://prover.certora.com/output/6554/3d920cfc2a97372a0b9b?anonymousKey=7726275875e7ebd4363b1bdb403cd41ee982624b

Third attempt: rule out more bad cases

invariant playerTwoNeverWins()
ballPosition() != 2

{
preserved with(env e) {

require ballPosition() == 1 || ballPosition() == 3;
}

}

Passes! (results link)
So the property holds …right?

//// contracts/BallGameBroken.sol

/// Move the ball to the next player,
/// based on who is currently holding it:
/// - player 1 will pass to player 3
/// - player 3 will pass to player 1
/// - everyone else will pass to player 2
///
/// @dev this version has a known bug
function pass() external {

if (ballPosition == 1)
ballPosition = 4;

else if (ballPosition == 3)
ballPosition = 1;

else
ballPosition = 2;

}

The rule still passes on the buggy code (results link)! Why?

▶ We ruled out the counterexample!
▶ We assumed something that we didn’t prove

https://prover.certora.com/output/6554/9feb9c5adc164e5b721b?anonymousKey=86f6100aee2ae1a87da9c9de36aad517e5dc231f
https://prover.certora.com/output/6554/8f5cce6884ccc41d990c?anonymousKey=947068e10c26c3e8f08f90e6d6eaefe63dbd94d3

Fourth attempt: strengthening the invariant
▶ If ball position can only be 1 or 3, it can’t be 2; let’s prove that instead

invariant onlyGoodPlayers()
ballPosition() == 1 || ballPosition() == 3

▶ Passes on our good code (results link)
▶ No extra requirements, so property holds.

▶ Fails on our broken code (results link)
▶ We catch the bad case

https://prover.certora.com/output/6554/3a6d9db7c45623ac1cd0?anonymousKey=199290e5d3f65b180aafa8015a522fd30ef5b3d4
https://prover.certora.com/output/6554/01701df958caac05f115?anonymousKey=052fe61bced2d6ff59056d4c09e5b738932aab20

Returning to original goal
▶ Wewanted to prove ballPosition() != 2
▶ Instead we proved ballPosition() == 1 || ballPosition() == 3
▶ Seems stronger, but can we check?

/// The ball should never get to player 2
invariant playerTwoNeverWins()

ballPosition() != 2
{

preserved with (env e) {
requireInvariant onlyGoodPlayers(); // was: require ballPosition() == 1 || ballPosition() == 3

}
}

requireInvariant is shorthand for require

▶ playerTwoNeverWins still passes on correct code (link)
▶ Still passes on buggy version too (link)
▶ …but it is much safer because we separately proved the requirement
▶ requireInvariant can be used anywhere require can, use it!

https://prover.certora.com/output/6554/9619c66f358f4dabe34c?anonymousKey=dbfcba6b11b4bb52ae00f79369f981adf919fb8d
https://prover.certora.com/output/6554/75dfd2a8d0252b12c772?anonymousKey=f5b6eb71870ede0dc4f725a945c3f73981d1c7ce

Back to ERC20

Back to ERC20: Invariants about total supply
Let’s prove invariants relating balances to total supply

▶ Individual user balances can’t be larger than the total supply
▶ Total supply is the sum of user balances (next session)

Proving that each user balance is bounded by total supply
▶ First attempt (results link):

invariant balancesBoundedByTotalSupply(address a)
balanceOf(a) <= totalSupply()

Fails on transfer:
▶ although a starts with small balance, b doesn’t necessarily!

▶ Second attempt: strengthen the invariant (results link)
invariant balancesBoundedByTotalSupply(address alice, address bob)

balanceOf(alice) + balanceOf(bob) <= totalSupply()

Fails for the same reason!
▶ alice and bob have small balances
▶ but chuckmight not!

▶ Fourth attempt: exercise (in 2 slides)
▶ Fifth (correct) attempt: next session

https://prover.certora.com/output/6554/de4f3f95795e0fcc9ae2?anonymousKey=e7996531d3d59ce4a407553f2e574dcca34fa125
https://prover.certora.com/output/6554/3b8e293d02d81b657282?anonymousKey=6de8c5524083d71507658c1b3a8afb0f73bfc911

Summary
Things we covered in this session

▶ Invariants are properties of the state that don’t change over time
▶ Use invariant keyword to write invariants

▶ Prover checks that constructor establishes invariant (instate)
▶ Prover checks that methodsmaintain the invariant (preserve)

▶ preserved blocks are an “escape hatch” to tell the prover things you
know
▶ …but this is dangerous!
▶ Only require things that must be true

▶ requireInvariants
▶ platform assumptions (e.g. msg.sender != 0)
▶ protocol assumptions (e.g. owner will never withdraw all the funds …)
▶ after writing specs, review your preserved blocks!

▶ Sometimes you need to strengthen invariants to prove them

Next session: strengthening bounded balancemore and proving it

Exercise: Exploit the buggy rule
▶ Fourth attempt: use preserved blocks:

invariant balancesBoundedByTotalSupply(address alice, address bob)
balanceOf(alice) + balanceOf(bob) <= totalSupply()

{
preserved transfer(address recip, uint256 amount) with (env e) {

require recip == alice || recip == bob;
require e.msg.sender == alice || e.msg.sender == bob;

}

preserved transferFrom(address from, address to, uint256 amount) {
require from == alice || from == bob;
require to == alice || to == bob;

}
}

▶ Here preserved blocks apply to specificmethods
▶ Rule passes (results link)

▶ Exercise: modify ERC20.sol to pass rule but violate invariant

▶ Note: I forgot to push this before we started!
▶ In ERC20Examples:

git switch main
git pull

https://prover.certora.com/output/6554/eeae7b95ab50947c734a?anonymousKey=340238dc683b5b65521ddf767b0f11a5bbf96374

